Not a blog ... just a personal diary on computational Mathematics

Main page Contents

My personal list of favorite unbiased estimators in statistics

Mathias Fuchs, March 2019
This is my personal list of favorite unbiased estimators.
I'm using the following abbreviations: So, here is the list of unbiased estimators:
mean $m = \bar{x} = \frac{1}{n}\sum x_i$
variance $s^2 = \frac{1}{n-1}\sum\bigl(x_i - \bar{x}\bigr)^2$
square of mean$\frac{1}{n}\sum x_i^2 - s^2 = m^2 - \frac{s^2}{n}$
fourth power of mean$m^4 - \frac{6 }{n}m^2s^2 + \bigl(\frac{-1}{2n} - \frac{3}{n-2} + \frac{2}{n-3}\bigr)y_2^2 + \bigl(\frac{-8}{n-1} + \frac{8}{n-2}\bigr) m y_3 + \bigl(\frac{-3}{n-1} + \frac{6}{n-2} -\frac{3}{n-3}\bigr) (y_4 - 3) - \frac{9}{n-1} + \frac{18}{n-2} - \frac{9}{n-3}$
square of population variance $\bigl(1 + \frac{1}{2(n-1)} + \frac{5}{2(n-2)} + \frac{9}{2(n-2)(n-3)}\bigr) y_2^2 - \big(\frac{1}{n-2} + \frac{3}{(n-2)(n-3)}\bigr) y_4$
variance of $s^2$$(s^2)^2 - \text{preceding line}$
population kurtosis $\mathbb{E}[(X-\mathbb{E}(X))^4]$ $ \bigl(\frac{3}{2(n-1)} + \frac{6}{n-2} - \frac{27}{2(n-3)}\bigr) y_2^2 + \bigl(1+\frac{1}{n-1}-\frac{6}{n-2} + \frac{9}{n-3}\bigr) y_4$
variance of $s^2$ - alternative$\frac{\text{preceding line}}{n} - \frac{\text{(second-to-last preceding line)} (n-3)}{n(n-1)}$
variance of $s^2$ - another alternative, shortest version $\bigl(\frac{1}{2(n - 2)} + \frac{1}{2n} - \frac{2}{n - 3} \bigr) (s^2)^2 + (\frac{3}{n - 3} - \frac{2}{n - 2}) y_4$
error of a supervised learning algorithmU-statistic associated with the kernel of degree $g+1$ where $g$ is the learning set size
Code containing the general U-statistic library, whose most important use case is supervised learning as described here.
Go back to the table of contents